998 resultados para Lyapunov stability


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input-output description of the original system, a circumstance that facilitates practical applications of the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new methodology for solving the multi-vehicle formation control problem. It employs a unique extension-decomposition-aggregation scheme to transform the overall complex formation control problem into a group of subproblems, which work via boundary interactions or disturbances. Thus, it is proved that the overall formation system is exponentially stable in the sense of Lyapunov, if all the individual augmented subsystems (IASs) are stable. Linear matrix inequality-based H8 control methodology is employed to design the decentralized formation controllers to reject the impact of the formation changes being treated as boundary disturbances and guarantee the stability of all the IASs, consequently maintaining the stability of the overall formation system. Simulation studies are performed to verify the stability, performance, and effectiveness of the proposed strategy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we study the Lyapunov stability and the Hopf bifurcation in a system coupling an hexagonal centrifugal governor with a steam engine. Here are given sufficient conditions for the stability of the equilibrium state and of the bifurcating periodic orbit. These conditions are expressed in terms of the physical parameters of the system, and hold for parameters outside a variety of codimension two. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lyapunov stability for a class of differential equation with piecewise constant argument (EPCA) is considered by means of the stability of a discrete equation. Applications to some nonlinear autonomous equations are given improving some linear known cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article addresses the problem of stability of impulsive control systems whose dynamics are given by measure driven differential inclusions. One important feature concerns the adopted solution which allows the consideration of systems whose singular dynamics do not satisfy the so-called Frobenius condition. After extending the conventional notion of control Lyapounov pair for impulsive systems, some stability conditions of the Lyapounov type are given. Some conclusions follow the outline of the proof of the main result.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a theorem based on the hyper-rectangle defined by the closed set of the time derivatives of the membership functions of Takagi-Sugeno fuzzy systems. This result is also based on Linear Matrix Inequalities and allows the reduction of the conservatism of the stability analysis in the sense of Lyapunov. The theorem generalizes previous results available in the literature. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work describes an alternative methodology for identification of aeroelastic stability in a range of varying parameters. Analysis is performed in time domain based on Lyapunov stability and solved by convex optimization algorithms. The theory is outlined and simulations are carried out on a benchmark system to illustrate the method. The classical methodology with the analysis of the system's eigenvalues is presented for comparing the results and validating the approach. The aeroelastic model is represented in state space format and the unsteady aerodynamic forces are written in time domain using rational function approximation. The problem is formulated as a polytopic differential inclusion system and the conceptual idea can be used in two different applications. In the first application the method verifies the aeroelastic stability in a range of air density (or its equivalent altitude range). In the second one, the stability is verified for a rage of velocities. These analyses are in contrast to the classical discrete analysis performed at fixed air density/velocity values. It is shown that this method is efficient to identify stability regions in the flight envelope and it offers promise for robust flutter identification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, three dimensional impact angle control guidance laws are proposed for stationary targets. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal 2-dimensional planes, the guidance laws are derived using the coupled dynamics. These guidance laws are designed using principles of conventional as well as nonsingular terminal sliding mode control theory. The guidance law based on nonsingular terminal sliding mode guarantees finite time convergence of interceptor to the desired impact angle. In order to derive the guidance laws, multi-dimension switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance law.